574 research outputs found

    Increased apelin receptor gene expression in the subfornical organ of spontaneously hypertensive rats.

    Get PDF
    The vascular organ of the lamina terminalis, subfornical organ (SFO), and area postrema comprise the sensory circumventricular organs (CVO) which are central structures that lie outside the blood brain barrier and are thought to provide an interface between peripherally circulating signals and the brain through their projections to central autonomic structures. The SFO expresses mRNA for the G protein-coupled apelin receptor (APJ, gene name aplnr) and exogenous microinjection of the neuropeptide apelin (apln) to the SFO elicits a depressor effect. Here we investigated the expression and cellular distribution of aplnr, apln and the recently described ligand apela (apela) in the CVOs and investigated whether differences in the levels of expression of apelinergic gene transcripts in these regions might underlie the chronic elevated blood pressure seen in hypertension. We carried out multiplex in situ hybridization histochemistry on CVO tissue sections from spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) controls. Confocal immunofluorescent images indicated strong aplnr expression, with lower levels of apln and modest apela expression, in the CVOs of both WKY rats and SHRs, in both neurons and glia. The expression level of aplnr transcripts was increased in the SFO of SHRs compared to WKY rats. Our data may highlight a potential dysfunction in the communication between CVOs and downstream signalling pathways in SHRs, which may contribute to its different phenotype/s

    Agonist-induced internalization and desensitization of the apelin receptor

    Get PDF
    Apelin acts via the G protein-coupled apelin receptor (APJ) to mediate effects on cardiovascular and fluid homeostasis. G protein-coupled receptor (GPCR) trafficking has an important role in the regulation of receptor signalling pathways and cellular functions, however in the case of APJ the mechanisms and proteins involved in apelin-induced trafficking are not well understood. We generated a stable HEK-293 cell line expressing N-terminus HA-tagged mouse (m) APJ, and used a semi-automated imaging protocol to quantitate APJ trafficking and ERK1/2 activation following stimulation with [Pyr(1)]apelin-13. The mechanisms of [Pyr(1)]apelin-13-induced internalization and desensitization were explored using dominant-negative mutant (DNM) cDNA constructs of G protein-coupled receptor kinase 2 (GRK2), β-arrestin1, EPS15 and dynamin. The di-phosphorylated ERK1/2 (ppERK1/2) response to [Pyr(1)]apelin-13 desensitized during sustained stimulation, due to upstream APJ-specific adaptive changes. Furthermore, [Pyr(1)]apelin-13 stimulation caused internalization of mAPJ via clathrin coated vesicles (CCVs) and also caused a rapid reduction in cell surface and whole cell HA-mAPJ. Our data suggest that upon continuous agonist exposure GRK2-mediated phosphorylation targets APJ to CCVs that are internalized from the cell surface in a β-arrestin1-independent, EPS15- and dynamin-dependent manner. Internalization does not appear to contribute to the desensitization of APJ-mediated ppERK1/2 activation in these cells

    Considering adult living donor liver transplantation: a qualitative study of patients and their potential donors

    Get PDF
    In April 2006, the Scottish Liver Transplant Unit became the first NHS transplant unit in the UK to offer adult Living Donor Liver Transplantation (LDLT). However, within the first 21 months of its availability, no patients on the transplant waiting list had pursued this treatment option. A qualitative interview study was devised to elicit the views of patients and their families with regards to LDLT. Interviews were conducted with 21 patients and 20 potential donors. The main reason why recipients did not pursue LDLT was their perception of risk to their donor. The anticipated feelings of guilt if the donor was harmed, resulted in LDLT being rejected. However, despite this many recipients would possibly consider LDLT as a “last option”. For donors, considering becoming a donor was an automatic response, driven by their need to help their loved one survive. However, consideration of the effects of donating upon their own immediate family often superseded their wish to donate. Whilst donors need to be given time to consider the implications of LDLT upon their own lives, it is essential that recipients understand that LDLT cannot be a last option, in order to allow them to reconsider their options realistically

    Impact of Analog and Digital Pre-emphasis on the Signal-to-Noise Ratio of Bandwidth-limited Optical Transceivers

    Get PDF
    The ever-growing machine-to-machine traffic in data centers has stimulated the increase of transceiver data rate from 25Gb/s/λ to 100Gb/s/λ and beyond. It is believed that advanced modulation formats and digital-to-analog converters (DACs) will be employed in next generation short-reach transceivers. Digital pre-emphasis techniques are widely employed in DAC-based transceivers to compensate for the high frequency roll-off due to the RF and optoelectronics components in optical transceivers. However, digital pre-emphasis essentially reduces the magnitude of the signal low frequency components for a flat frequency response, which unavoidably increases quantization error, reducing the overall signal-to-noise ratio. This trade-off between SNR and bandwidth conflicts with the high SNR requirement of advanced modulation formats such as the Nyquist-shaped pulse amplitude modulation (PAM). To mitigate the quantization error induced SNR degradation, we show that analog pre-emphasis filters can be used in conjunction with digital pre-emphasis for improved system performance. To understand the impact of the analog pre-emphasis filter on system performance, we analyze the relationship between the flatness of the system frequency response and the SNR degradation due to digital pre-emphasis, and demonstrate 1.1-dB increase of receiver sensitivities, for both 64-Gb/s and 128-Gb/s intensity-modulation direct detection (IM-DD) 20 PAM4 signals, respectively employing a directly modulated laser (DML) and an electroabsorption modulator (EAM)

    Abnormal response to negative feedback in depression

    Get PDF
    Background. Recent studies have suggested that subjects with depression suffer a diagnosis-specific motivational deficit, characterized by an abnormal response to negative feedback that endures beyond clinical recovery. Furthermore, it has been suggested that negative feedback may motivate non-depressed controls, but not depressed patients, to improve their performance in neuropsychological tests. Methods. We describe two studies. The first compared performance on the simultaneous and delayed match to sample (SDMS) task from the CANTAB neuropsychological test battery, in 20 patients with severe depression with 20 with acute schizophrenia, 40 with chronic schizophrenia and 40 healthy controls. The second examined the performance of depressed patients with diurnal variation in symptoms and cognitive function. Results. All patients groups showed impairments on the simultaneous and delayed match to sample task compared to controls. Depressed patients did not show an abnormal response to negative feedback. Controls did not show a motivational effect of negative feedback. Depressed patients with diurnal variation showed no variation in their response to perceived failure. There was no evidence of abnormal response to negative feedback in any patient group using the ‘runs test’ or of a motivational effect in controls. Conditional probability analysis was not independent of the total number of errors made in the SDMS task. Conclusions. Further studies are suggested to examine whether an abnormal response to negative feedback characterizes particular subgroups of patients suffering from depression

    49 Gbit/s Direct-Modulation and Direct-Detection Transmission over 80 km SMF-28 without Optical Amplification or Filtering

    Get PDF
    We demonstrate direct-modulation of a discrete mode laser using Discrete Multi-Tone modulation for transmission distances up to 100 km in the 1550 nm band. A large operational temperature range (0-65ºC) is also demonstrated

    The effects of apelin on hypothalamic–pituitary–adrenal axis neuroendocrine function are mediated through corticotrophin-releasing factor- and vasopressin-dependent mechanisms

    Get PDF
    The apelinergic system has a widespread expression in the central nervous system (CNS) including the paraventricular nucleus, supraoptic nucleus and median eminence, and isolated cells of the anterior lobe of the pituitary. This pattern of expression in hypothalamic nuclei known to contain corticotrophin-releasing factor (CRF) and vasopressin (AVP) and to co-ordinate endocrine responses to stress has generated interest in a role for apelin in the modulation of stress, perhaps via the regulation of hormone release from the pituitary. In this study, to determine whether apelin has a central role in the regulation of CRF and AVP neurones, we investigated the effect of i.c.v. administration of pGlu-apelin-13 on neuroendocrine function in male mice pre-treated with the CRF receptor antagonist, α-helical CRF9–41, and in mice-lacking functional AVP V1b receptors (V1bR KO). Administration of pGlu-apelin-13 (1 mg/kg i.c.v.) resulted in significant increases in plasma ACTH and corticosterone (CORT), which were significantly reduced by pre-treatment with α-helical CRF9–41, indicating the involvement of a CRF-dependent mechanism. Additionally, pGlu-apelin-13-mediated increases in both plasma ACTH and CORT were significantly attenuated in V1bR KO animals when compared with wild-type controls, indicating a role for the vasopressinergic system in the regulation of the effects of apelin on neuroendocrine function. Together, these data confirm that the in vivo effects of apelin on hypothalamic–pituitary–adrenal neuroendocrine function appear to be mediated through both CRF- and AVP-dependent mechanisms

    Abnormal fluid homeostasis in apelin receptor knockout mice

    Get PDF
    The apelinergic system, comprised of apelin and its G protein-coupled receptor (APJ; APLNR as given in MGI Database), is expressed within key regions of the central nervous system associated with arginine vasopressin (AVP) synthesis and release as well as in structures involved in the control of drinking behaviour, including the magnocellular neurones of the hypothalamus, circumventricular organs, and the pituitary gland. This localisation is indicative of a possible functional role in fluid homeostasis. We investigated a role for APJ in the regulation of fluid balance using mice deficient for the receptor. Male APJ wild-type and knockout (APJ−/−) mice were housed in metabolic cages to allow determination of water intake and urine volume and osmolality. When provided with free access to water, APJ−/− mice drank significantly less than wild-types, while their urine volume and osmolality did not differ. Water deprivation for 24 h significantly reduced urine volume and increased osmolality in wild-type but not in APJ−/− mice. Baseline plasma AVP concentration increased comparably in both wild-type and APJ−/− mice following dehydration; however, APJ−/− mice were unable to concentrate their urine to the same extent as wild-type mice in response to the V2 agonist desmopressin. Analysis of c-fos (Fos as given in MGI Database) mRNA expression in response to dehydration showed attenuation of expression within the subfornical organ, accentuated expression in the paraventricular nucleus, but no differences in expression in the supraoptic nucleus nor median pre-optic nucleus in APJ−/− mice compared with wild-type. These findings demonstrate a physiological role for APJ in mechanisms of water intake and fluid retention and suggest an anti-diuretic effect of apelin in vivo

    Localisation of GPR30, a novel G protein-coupled oestrogen receptor, suggests multiple functions in rodent brain and peripheral tissues

    Get PDF
    Recently, the G protein-coupled receptor GPR30 has been identified as a novel oestrogen receptor (ER). The distribution of the receptor has been thus far mapped only in the rat central nervous system. This study was undertaken to map the distribution of GPR30 in the mouse brain and rodent peripheral tissues. Immunohistochemistry using an antibody against GPR30 revealed high levels of GPR30 immunoreactivity (ir) in the forebrain (e.g. cortex, hypothalamus and hippocampus), specific nuclei of the midbrain (e.g. the pontine nuclei and locus coeruleus) and the trigeminal nuclei and cerebellum Purkinje layer of the hindbrain in the adult mouse brain. In the rat and mouse periphery, GPR30-ir was detected in the anterior, intermediate and neural lobe of the pituitary, adrenal medulla, renal pelvis and ovary. In situ hybridisation histochemistry using GPR30 riboprobes, revealed intense hybridisation signal for GPR30 in the paraventricular nucleus and supraoptic nucleus (SON) of the hypothalamus, anterior and intermediate lobe of the pituitary, adrenal medulla, renal pelvis and ovary of both rat and mouse. Double immunofluorescence revealed GPR30 was present in both oxytocin and vasopressin neurones of the paraventricular nucleus and SON of the rat and mouse brain. The distribution of GPR30 is distinct from the other traditional ERs and offers an additional way in which oestrogen may mediate its effects in numerous brain regions and endocrine systems in the rodent
    corecore